Digitizing the Analog World: Challenges and Opportunities

April 5, 2010 Boris Murmann <u>murmann@stanford.edu</u>

Murmann Mixed-Signal Group

Research Overview

Research Examples

- High-performance A/D converters
- Neural prosthetics
- MEMS accelerometers
- Large area electronics

Digitally Assisted A/D Converters

ADC for a "Digital" Serial Link

- No analog error accumulation and better scalability
- Need efficient high-speed ADC, typically > 10GS/s

Time-Interleaving

Popular way to increase ADC throuhgput

Imperfections

- Mismatches result in signal distortion
 - □ Gain
 - □ Offset
 - □ Timing Skew

Our Focus: Timing Skew

(2-channel example)

Skew Calibration Using Extra ADC

- Statistics-based skew measurement in digital backend
- Correction through analog adjustments

Timing of Auxiliary ADC Phase

11

Calibration Scheme

For each channel, adjust delay cells until correlation between calibration ADC output and each slice are maximized

 Removed pre-publication slides on experimental results...

MEMS Accelerometer

- Capacitance change ~10 fF/g
- Desired resolution ~10 mg for airbags and ESP
 - □ Must resolve capacitance changes of ~100 aF
- Problem: Drift in parasitic bondwire capacitance

Sigma-Delta Interface

M. Lemkin and B. E. Boser, "A three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics," *IEEE J. Solid-State Circuits*, vol. 34, pp. 456-468, April 1999.

Offset

Linear Feedback System with Two Inputs

Spring Constant Modulation

The output due to C_{off} can be modulated to higher frequencies by modulating the spring constant k

$$V_{Out} \cong F_{mech} \cdot \frac{1}{FB} + C_{Off} \cdot \frac{k + \tilde{k}}{FB \cdot \frac{\partial C}{\partial x}}$$

Spring softening effect

Can be used to modulate spring constant (k)

Modulation through Multiplexed Feedback

Output Spectrum with 1-Tone Modulation

Pseudo-Random Modulation

Parameter Convergence

Chip Design in Progress

Neural Prosthetics

- Cortical motor prosthetics
 - Neurons in the motor cortical areas of the brain encode information about intended movement

Courtesy K.V. Shenoy

Courtesy L.R. Hochberg 25 Nature Magazine June '06

Neural Signal Acquisition

- Electrode signals consist of multiple sources
 - DC Offset, about 15mV from electrode/tissue interface
 - □ Local field potential (LFP), ≤3mV peak, 10Hz to 100Hz
 - □ Spikes from nearby neurons, 35µV 1mV peak, 500Hz to 5kHz

Courtesy C.L. Klaver

Separate the fast and slow signal acquisition for DR
Custom front end design for each path

	Spikes	Local Field Potential
Gain	600 V/V	200 V/V
Lower Cutoff	300Hz	1Hz
Upper Cutoff	10kHz	1kHz
Input Referred Noise (total from sampling node)	2.0µVrms	1.0µVrms in 10-100Hz
Total Power (96x Array)	3mW	100µW

Spike Path Front-End

Sampling Phase

- Integrate signal current on C_B and sample
 - High-pass for DC block using C_{ac} and R_{big} (offresistance)
 - A₁ contains a pole that helps minimize noise folding

A1 Implementation Details

Static Power

Two-Channel Interface Pixel

Die Photo (96 channels, 5mm x 5mm)

The Future?

Organic Semiconductors

- Mechanically flexible
- Suitable for solution processing
 - Cover large areas at low cost
 - Make disposable devices

M. Berggren, D. Nilsson, and N. D. Robinson, Nat. Mater. 6, (2007).

Jellyfish Autonomous Node

http://muri.mse.vt.edu/

Jellyfish Bell Prototype (Virginia Tech)

A bio-inspired shape memory alloy composite (BISMAC) actuator A .A .Villanueva, *et al.*, 2010 *Smart Mater. Struct.* **19** 025013 (17pp)

Want to Make Plastic ADCs !

6-bit A/D Converter Prototype

Substrate	Glass
Interconnect	Ti/Au evaporation, litho, wet etch
Gate electrodes	Al evaporation, shadow masking
Source/Drain	Au Evaporation, shadow masking
Dielectric	5.7nm AlO _x /SAM
PFET	DNTT, ~0.5 cm²/Vs
NFET	F ₁₆ CuPc, ~0.02 cm²/Vs
Area	28mm x 22mm
Component count	74

W. Xiong U. Zschieschang, H. Klauk, and B. Murmann, "A 3V, 6b Successive Approximation ADC using Complementary Organic Thin-Film Transistors on Glass," ISSCC 2010.

ADC Schematic

Comparator

Measured DNL/INL

Measured DNL/INL

Organic ADC Summary

Process	3 metal complementary organic thin-film
Minimum feature size	20 μm
Chip area	28 mm x 22 mm
Resolution	6 bits
Full-scale range	2 V
Max DNL / INL	-0.6 LSB / 0.6 LSB
Clock rate / Update rate	100 Hz / 16.7 Hz
Power consumption	3.6 μW @ 3 V

Conclusions

- Mixed-signal IC design remains a vibrant area of research
- Changing boundary conditions
 - Ever-increasing need for higher performance, lower power
 - □ New applications
 - New device technologies
- A recurring theme in our research
 - Looking for new ways to overcome analog imperfections using DSP and calibration

